Rigidity of Infinite Disk Patterns

نویسندگان

  • Zheng-Xu He
  • ZHENG-XU HE
چکیده

Let P be a locally finite disk pattern on the complex plane C whose combinatorics is described by the one-skeleton G of a triangulation of the open topological disk and whose dihedral angles are equal to a function Θ : E → [0, π/2] on the set of edges. Let P ∗ be a combinatorially equivalent disk pattern on the plane with the same dihedral angle function. We show that P and P ∗ differ only by a euclidean similarity. In particular, when the dihedral angle function Θ is identically zero, this yields the rigidity theorems of B. Rodin and D. Sullivan, and of O. Schramm, whose arguments rely essentially on the pairwise disjointness of the interiors of the disks. The approach here is analytical, and uses the maximum principle, the concept of vertex extremal length and the recurrency of a family of electrical networks obtained by placing resistors on the edges in the contact graph of the pattern. A similar rigidity property holds for locally finite disk patterns in the hyperbolic plane, where the proof follows by a simple use of the maximum principle. Also, we have a uniformization result for disk patterns. In a future paper, the techniques of this paper will be extended to the case when 0 ≤ Θ < π . In particular, we will show a rigidity property for a class of infinite convex polyhedra in the 3-dimensional hyperbolic space.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rigidity and Irregularity Effect on Surface Wave Propagation in a Fluid Saturated Porous Layer

The propagation of surface waves in a fluid- saturated porous isotropic layer over a semi-infinite homogeneous elastic medium with an irregularity for free and rigid interfaces have been studied. The rectangular irregularity has been taken in the half-space. The dispersion equation for Love waves is derived by simple mathematical techniques followed by Fourier transformations.  It can be seen t...

متن کامل

Influence of Rigidity, Irregularity and Initial Stress on Shear Waves Propagation in Multilayered Media

The propagation of shear waves in an anisotropic fluid saturated porous layer over a prestressed semi-infinite homogeneous elastic half-space lying under an elastic homogeneous layer with irregularity present at the interface with rigid boundary has been studied. The rectangular irregularity has been taken in the half-space. The dispersion equation for shear waves is derived by using the pertur...

متن کامل

What is an Almost Normal Surface?

A major breakthrough in the theory of topological algorithms occurred in 1992 when Hyam Rubinstein introduced the idea of an almost normal surface. We explain how almost normal surfaces emerged naturally from the study of geodesics and minimal surfaces. Patterns of stable and unstable geodesics can be used to characterize the 2-sphere among surfaces, and similar patterns of normal and almost no...

متن کامل

Boundary Layers and Heat Transfer on a Rotating Rough Disk

The study of flow and heat transfer over rotating circular disks is of great practical importance in understanding the cooling of rotatory machinery such as turbines, electric motors and design and manufacturing of computer disk drives. This paper presents an analysis of the flow and heat transfer over a heated infinite permeable rough disk. Boundary-layer approximation reduces the elliptic Nav...

متن کامل

Local rigidity of infinite dimensional Teichmüller Spaces

This paper presents a rigidity theorem for infinite dimensional Bergman spaces of hyperbolic Riemann surfaces, which states that the Bergman space A1(M), for such a Riemann surface M , is isomorphic to the Banach space of summable sequence, l1. This implies that whenever M and N are Riemann surfaces which are not analytically finite, and in particular are not necessarily homeomorphic, then A1(M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999